Version 1.0

General Certificate of Education (A-level) June 2011

Mathematics

MD01

(Specification 6360)

Decision 1

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

				aths
001 Q	Solution	Marks	Total	WWW. Mymathscioc
	Bolution		iviai	
1(a)				
		M1		Bipartite graph, 2 sets of 6 vertices
				with 10+ edges
		A1	2	Correct including labelling
	E			
	<i>F</i> •••6			
(b)	E-5+D			
(~)	E-3+A			
	F-5+D	M1		1 correct
	F-5+E			
	$ \begin{array}{c} 1 - A + 3 \\ 1 - B + 2 \end{array} $	M1		1 correct, from a different starting point
	$\begin{array}{c} 6-B+1\\ 6-B+2 \end{array}$			
		A1		
	$ \left. \begin{array}{c} E-3+A-1\\ F-5+D-2+B-6 \end{array} \right\} $	A1		Either order
	Match A1, B6, C4, D2, E3, F5	B1	5	Must be listed, not simply shown on diagram
	or			
	first			
	E - 5 + D - 2 + B - 1 then	(A1)		
	F - 5 + E - 3 + A - 1 + B - 6	(1)		Must be in this order
		(A1)		
	or first			
	E-5+D-2+B-6	(A1)		
	then			Must be in this order
	F - 5 + E - 3 + A - 1	(A1)		
	or			
	first $F - 5 + D - 2 + B - 1$	(A1)		
	$1^{-} = 5 + D = 2 + D = 1$ then	(***)		Must be in this order
	E - 3 + A - 1 + B - 6	(A1)		

				Comments
1 (cont)		Manka	Tatal	Commente
Q 2(a)(i)	Solution <i>x</i> < 6	Marks B1	Total	CommentsCondone $x \le 5$
2(a)(1)			1	
(ii)	<i>x</i> < 4	B1	1	$x \leq 3$
(b)(i)	<i>x</i> < 11	B1	1	$x \le 10$
(ii)	<i>x</i> > 2	B1	1	$x \ge 3$ Condone $2 < x < 11$
(c)	<i>x</i> = 3	M1 A1	2	Their max (b)(ii) $< x <$ their min (a) CSO
	Total		6	
3(a)(i)	AC CH FH CE	M1		Prim's, ST, 5+ edges (no cycles), edges not lengths or vertices, with first 4 edges correct
	CD (or ED)	B1	1	7 edges
	GH DB			
		A1		<i>CD</i> (or <i>ED</i>) 5th
		A1	4	All correct
(ii)				<i>CD</i> , <i>ED</i> either of these lines
		M1		ST with 5+ edges, connected, no cycles
	$F \bullet \qquad \qquad \downarrow H \qquad \qquad \downarrow D \\ G \qquad \qquad B \qquad \qquad B$	A1	2	Correct, including labelling
(iii)	75(p)	B1	1	
(b)	Delete <i>CH</i> , <i>HG</i> , <i>HF</i> and add <i>FA</i> and one of <i>GC</i> , <i>GA</i> , <i>GD</i> , <i>GF</i> or a ST with 6 edges not including <i>H</i> (either as a list or a diagram)	M1		Deleting their edges connected to <i>H</i> , and adding edges to make a ST with 6 edges
	70(p)	A1	2	Note: 70 scores 2/2
	Total		<u>2</u> 9	

				Munu My Mainschoud Comments
MD01 (con Q	t) Solution	Marks	Total	Comments
~			10141	
4(a)(i)	F[7] 7 T 4 3 4 E18 17	M1		2+ values at <i>S</i> or <i>R</i> or <i>T</i>
	7	A1		Correct values at S
		m1		2 values at <i>E</i> and 2 values at <i>B</i>
	$O \xrightarrow{10} S^{10} S^{10}$	m1		3 values at D
	$ \begin{array}{c} 6 \\ 3 \\ M_{\overline{6}} \\ 8 \\ 4 \\ 14 \\ 13 \end{array} $	A1		All correct, condone 0 missing at <i>A</i> , with rejected values crossed and final values boxed and no extra values at other vertices
	14 [13]	B1	6	22 is final value at <i>D</i> (value on diagram overrides value in script)
(ii)	Route OFSTED	B1	1	Or reverse
(b)(i)	16	B1	1	
(ii)	O F S R B	B1	1	Or reverse
5(a)	Total $AC + FD$ (= 14 + 18) = 32	M1	9	These 3 correct sets of pairs, letters not numbers
	$AF + CD \ (= 10 + 26) = 36$	A2,1		3 correct totals, 2 correct totals
	$AD + CF \ (= 26 + 24) = 50$			Condone 26 + 24 not evaluated if statement of "too big" OE
	$\min = 150 + 32$	m1		150 + their smallest, PI
	= 182	A1cso	5	
(b)	Repeat FD	M1		PI 182 – AC
	(= 150 + 18) = 168	A1	2	168 unsupported scores 2/2
(c)(i)	Repeat AF	M1		РІ
	(= 150 + 10) = 160	A1	2	160 unsupported scores 2/2
(ii)	(Start/finish) C and D Total	B1	1 10	Must have both and only these

1 (cont)							Comments
Q			Solutior	1		Marks	Total	Comments
6(a)	A 6	В	С	D	E			
	6.5	7	300	6.5	25.375			
	0.5	6.75		6.75 6.625	-7.547	M1		Trace as far as 2 values for D and E Condone omission of 6, 7, 300
	6.625			6.6875	9.22 0.92	A1 m1		6.5 at <i>A</i>, 6.75 at <i>D</i>At least 4 values for <i>D</i> and <i>E</i>
			I	I		A1	4	All correct including sight of 6, 7, 300, with AWRT correct to 3sf or better
(b)	1 st reason	n: No ou	utput			E1		OE
	2 nd reaso within w outset					E2,1	3	OE For E2, must be a general statement For E1, a statement only referring to 6, 7 or 300
					Total		7	

D01 (cont)				WWWW.TTWTTRATISCIOLIC.COT.
Q	Solution	Marks	Total	Comments
7(a)	$x+5y \ge 25$ OE	B1		ISW
	$2x+15y \ge 60$ OE	B1		ISW
	$x + 25y \ge 40$ OE	B1		ISW
	(C =) 2.5x + 15y	B1	4	ISW; condone $250x + 1500y$, but not any other multiples
(b)(i)	y 5 4 4 4 4 4 4 4 4 4 4 4 4 4	B1 B1 B1 B1		Note: all points need to be correct to within half a square horizontally and vertically Line through (0, 5) and (25, 0) Line through (0, 4) and (30, 0) Line through (15, 1) and (30, 0.4) FR, must have all lines correct and labelled region (condone no shading) Objective line drawn, gradient of $-\frac{1}{6}$ or -6
		A1	6	Gradient = $-\frac{1}{6}$
(ii)	15 DIY, 2 trade	B1	1	
(iii)	(Cost) £67.50	B1	1	Condone 6750p, £67.5
	Total		12	

				W. M. M. M. M.
1 (cont)	Y			Comments
Q	Solution	Marks	Total	Comments
	P U S R (= 40)	E1		
	Less than any other route	E1	2	Or any one of $PQR = 50$, $PUQR = 45$, PUR = 44, $PUTSR = 54$ etc stated
(ii)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B1 B1	2	6+ correct either above or below diagonal All correct
(b)(i)	QUSTPRQ	M1		Tour visiting vertices once only (except start/finish vertex)
	= 119 (min)	m1 A1 B1	4	Visits all vertices Correct order
(ii)	QUSTUPUSRQ	M1 A1	2	Any "expansion" of <i>TP</i> or <i>PR</i> from their (b)(i), PI
(c)	P• • R U• · · · · · · · · · · · · · · · · · · ·	M1		ST without Q (either drawn (vertices labelled) or edges listed) and 2 different edges from Q (either drawn (vertices labelled) or edges listed)
	· · · · · · · · · · · · · · · · · · ·	A1	1	either UT or TS in correct MST
	1	B1		4 edges in a labelled ST (must not include Q)
		A1		Correct 2 edges from <i>Q</i>
			ı _	
	= 83	B1	5 15	
ł	Total TOTAL	↓ I	15 75	